The Table, The RAN, The AI and The Serving

 


 

 

What is the singularly pivotal value addition that 5G networks bring to the table? Beyond doubt, it is their ability to become all things for everyone. Welcome aboard traffic optimization – better known as network slicing plus edge computing.

And who serves the traffic optimization in all its flavor? Undoubtedly, AI.

No wonder, we forecast that the addressable market for AI in RAN traffic optimization will grow by a whopping 31.5% during 2023-2028 in our upcoming report “AI and RAN – How fast will they run?”

Let us look at network slicing first. To be sure, network slicing is offered to an extent on 4G networks as well. But is the full flavor of the feature that 5G promises to unleash, that is making matters ripe for intervention of AI and ML technologies. Simply put, network slicing puts forth a plethora of difficult decisions that network planners need to confront. These decisions involve the degree to which granularity in slicing should be achieved and how to optimally manage the resultant overheads. This is clearly easier said than done as this decision involves a highly evolved combination of classification and forecasting methodologies. Both these are undoubtedly, the biggest strenghts of AI and ML technologies.

While network slicing is the end-result for the demand to segregate traffic, it is not the only aspect to traffic optimization. The other major pole driving this market is the development of the edge-driven networks. As payload management gets increasingly decentralized, it is leading to a manifold rise in network complexity. In this context again, AI and ML technologies step in to smoothen decision making. Unlike network slicing though, edge computing has received its most significant boost with the advent of 5G networks as the traffic capacity explosion and the demand for latency minimization supplied the business case for the decentralization of networks.

Traffic optimization is the most solid among all the end-applications covered for AI and ML technologies in RAN. It is solid on the most important count of market maturity. The NFV and SDN movement was inspired greatly by the idea of making cellular mobile networks flexible. Network slicing is another name for SDN. 5G network architecture is best suited for cloud-native network functions (CNF), an evolved variant of NFV. Network slicing in 5G networks is the SDN riding on NFV. This is the dream scenario for most forward looking telecom stakeholders, chiefly the telcos. Work on this initiative is on for close to a decade now although is commercial fruition is visible only for the past 24 months.

Due to the deep understanding of what network slicing entails in terms of network capabilities, stakeholders are ready with a framework for implementing AI and ML technologies – so elegantly witnessed in the O-RAN architecture framework.

Another major driver for traffic optimization is the edge computing. Edge computing  as an architectural framework is fairly straightforward to execute on a smaller scale. When scaled up however, it requires constant optimization and re-evaluation, something which AI and ML are adept at. On the commercial front, the advent of 5G networks has built the business case for edge computing very emphatically. Here again, the technologies underpinning edge computing can be termed as mature and often occupy the upper reaches of the protocol stack, thereby increasing the addressable market for AI and ML adoption.

 

Published on: February 09, 2024

 
Kaustubha Parkhi
Principal Analyst, Insight Research
 

 

RELATED BLOGS

Awakening the Beast in the RAN Equipment Market – An Nvidia Imperative!

      Nvidia has been showing some serious urgency into the RAN. Sample its vision for the AI-RAN Alliance, which it helped birth earlier this year, “Unlike standards-setting organizations, where all the efforts are focused on developing specification documents for interoperability, AI-RAN Alliance’s focus is to create implementation blueprints and benchmark the efficacies of … Continue reading Awakening the Beast in the RAN Equipment Market – An Nvidia Imperative!

“En-caching” the RAN – the AI way

      RAN caching is an intuitive use-case for AI. Our report “AI and RAN – How fast will they run?”, places caching third in the list of top AI applications in the RAN. There is seriously nothing new about caching. In computing analogy, caching is as old as computing itself. The reason caching and … Continue reading “En-caching” the RAN – the AI way
Share of Addressable Market in Traffic Optimization End-Application Mobile RAN for AI and Related Technologies; by Geographical Region 2023-2028

What Drives AI in Network Optimization Globally?

      Let us come straight to the point. RAN shipments data recorded globally by several sources reveals the CAGR to be in single digits. Insight Research, on the other hand, pegs the growth for addressable market for AI in RAN in healthy double-digits. What explains the apparent dichotomy? Well, the answer is very … Continue reading What Drives AI in Network Optimization Globally?

Select your currency
INR Indian rupee